Consistency and Reality

Consistency and inconsistency, in their logical sense, are relationships between statements or between the parts of a statement. They are not properties of reality as such.

“Wait,” you will say. “If consistency is not a property of reality, then you are implying that reality is not consistent. So reality is inconsistent?”

Not at all. Consistency and inconsistency are contraries, not contradictories, and they are properties of statements. So reality as such is neither consistent nor inconsistent, in the same way that sounds are neither white nor black.

We can however speak of consistency with respect to reality in an extended sense, just as we can speak of truth with respect to reality in an extended sense, even though truth refers first to things that are said or thought. In this way we can say that a thing is true insofar as it is capable of being known, and similarly we might say that reality is consistent, insofar as it is capable of being known by consistent claims, and incapable of being known by inconsistent claims. And reality indeed seems consistent in this way: I might know the weather if I say “it is raining,” or if I say, “it is not raining,” depending on conditions, but to say “it is both raining and not raining in the same way” is not a way of knowing the weather.

Consider the last point more precisely. Why can’t we use such statements to understand the world? The statement about the weather is rather different from statements like, “The normal color of the sky is not blue but rather green.” We know what it would be like for this to be the case. For example, we know what we would expect if it were the case. It cannot be used to understand the world in fact, because these expectations fail. But if they did not, we could use it to understand the world. Now consider instead the statement, “The sky is both blue and not blue in exactly the same way.” There is now no way to describe the expectations we would have if this were the case. It is not that we understand the situation and know that it does not apply, as with the claim about the color of the sky: rather, the situation described cannot be understood. It is literally unintelligible.

This also explains why we should not think of consistency as a property of reality in a primary sense. If it were, it would be like the color blue as a property of the sky. The sky is in fact blue, but we know what it would be like for it to be otherwise. We cannot equally say, “reality is in fact consistent, but we know what it would be like for it to be inconsistent.” Instead, the supposedly inconsistent situation is a situation that cannot be understood in the first place. Reality is thus consistent not in the primary sense but in a secondary sense, namely that it is rightly understood by consistent things.

But this also implies that we cannot push the secondary consistency of reality too far, in several ways and for several reasons.

First, while inconsistency as such does not contribute to our understanding of the world, a concrete inconsistent set of claims can help us understand the world, and in many situations better than any particular consistent set of claims that we might currently come up with. This was discussed in a previous post on consistency.

Second, we might respond to the above by pointing out that it is always possible in principle to formulate a consistent explanation of things which would be better than the inconsistent one. We might not currently be able to arrive at the consistent explanation, but it must exist.

But even this needs to be understood in a somewhat limited way. Any consistent explanation of things will necessarily be incomplete, which means that more complete explanations, whether consistent or inconsistent, will be possible. Consider for example these recent remarks of James Chastek on Gödel’s theorem:

1.) Given any formal system, let proposition (P) be this formula is unprovable in the system

2.) If P is provable, a contradiction occurs.

3.) Therefore, P is known to be unprovable.

4.) If P is known to be unprovable it is known to be true.

5.) Therefore, P is (a) unprovable in a system and (b) known to be true.

In the article linked by Chastek, John Lucas argues that this is a proof that the human mind is not a “mechanism,” since we can know to be true something that the mechanism will not able to prove.

But consider what happens if we simply take the “formal system” to be you, and “this formula is unprovable in the system” to mean “you cannot prove this statement to be true.” Is it true, or not? And can you prove it?

If you say that it is true but that you cannot prove it, the question is how you know that it is true. If you know by the above reasoning, then you have a syllogistic proof that it is true, and so it is false that you cannot prove it, and so it is false.

If you say that it is false, then you cannot prove it, because false things cannot be proven, and so it is true.

It is evident here that you can give no consistent response that you can know to be true; “it is true but I cannot know it to be true,” may be consistent, but obviously if it is true, you cannot know it to be true, and if it is false, you cannot know it to be true. What is really proven by Gödel’s theorem is not that the mind is not a “mechanism,” whatever that might be, but that any consistent account of arithmetic must be incomplete. And if any consistent account of arithmetic alone is incomplete, much  more must any consistent explanation of reality as a whole be incomplete. And among more complete explanations, there will be some inconsistent ones as well as consistent ones. Thus you might well improve any particular inconsistent position by adopting a consistent one, but you might again improve any particular consistent position by adopting an inconsistent one which is more complete.

The above has some relation to our discussion of the Liar Paradox. Someone might be tempted to give the same response to “tonk” and to “true”:

The problem with “tonk” is that it is defined in such a way as to have inconsistent implications. So the right answer is to abolish it. Just do not use that word. In the same way, “true” is defined in such a way that it has inconsistent implications. So the right answer is to abolish it. Just do not use that word.

We can in fact avoid drawing inconsistent conclusions using this method. The problem with the method is obvious, however. The word “tonk” does not actually exist, so there is no problem with abolishing it. It never contributed to our understanding of the world in the first place. But the word “true” does exist, and it contributes to our understanding of the world. To abolish it, then, would remove some inconsistency, but it would also remove part of our understanding of the world. We would be adopting a less complete but more consistent understanding of things.

Hilary Lawson discusses this response in Closure: A Story of Everything:

Russell and Tarski’s solution to self-referential paradox succeeds only by arbitrarily outlawing the paradox and thus provides no solution at all.

Some have claimed to have a formal, logical, solution to the paradoxes of self-reference. Since if these were successful the problems associated with the contemporary predicament and the Great Project could be solved forthwith, it is important to briefly examine them before proceeding further. The argument I shall put forward aims to demonstrate that these theories offer no satisfactory solution to the problem, and that they only appear to do so by obscuring the fact that they have defined their terms in such a way that the paradox is not so much avoided as outlawed.

The problems of self-reference that we have identified are analogous to the ancient liar paradox. The ancient liar paradox stated that ‘All Cretans are liars’ but was itself uttered by a Cretan thus making its meaning undecidable. A modern equivalent of this ancient paradox would be ‘This sentence is not true’, and the more general claim that we have already encountered: ‘there is no truth’. In each case the application of the claim to itself results in paradox.

The supposed solutions, Lawson says, are like the one suggested above: “Just do not use that word.” Thus he remarks on Tarski’s proposal:

Adopting Tarski’s hierarchy of languages one can formulate sentences that have the appearance of being self-referential. For example, a Tarskian version of ‘This sentence is not true’ would be:

(I) The sentence (I) is not true-in-L.

So Tarski’s argument runs, this sentence is both a true sentence of the language meta-L, and false in the language L, because it refers to itself and is therefore, according to the rules of Tarski’s logic and the hierarchy of languages, not properly formed. The hierarchy of languages apparently therefore enables self-referential sentences but avoids paradox.

More careful inspection however shows the manoeuvre to be engaged in a sleight of hand for the sentence as constructed only appears to be self-referential. It is a true sentence of the meta-language that makes an assertion of a sentence in L, but these are two different sentences – although they have superficially the same form. What makes them different is that the meaning of the predicate ‘is not true’ is different in each case. In the meta-language it applies the meta-language predicate ‘true’ to the object language, while in the object language it is not a predicate at all. As a consequence the sentence is not self-referential. Another way of expressing this point would be to consider the sentence in the meta-language. The sentence purports to be a true sentence in the meta-language, and applies the predicate ‘is not true’ to a sentence in L, not to a sentence in meta-L. Yet what is this sentence in L? It cannot be the same sentence for this is expressed in meta-L. The evasion becomes more apparent if we revise the example so that the sentence is more explicitly self-referential:

(I) The sentence (I) is not true-in-this-language.

Tarski’s proposal that no language is allowed to contain its own truth-predicate is precisely designed to make this example impossible. The hierarchy of languages succeeds therefore only by providing an account of truth which makes genuine self-reference impossible. It can hardly be regarded therefore as a solution to the paradox of self-reference, since if all that was required to solve the paradox was to ban it, this could have been done at the outset.

Someone might be tempted to conclude that we should say that reality is inconsistent after all. Since any consistent account of reality is incomplete, it must be that the complete account of reality is inconsistent: and so someone who understood reality completely, would do so by means of an inconsistent theory. And just as we said that reality is consistent, in a secondary sense, insofar as it is understood by consistent things, so in that situation, one would say that reality is inconsistent, in a secondary sense, because it is understood by inconsistent things.

The problem with this is that it falsely assumes that a complete and intelligible account of reality is possible. This is not possible largely for the same reasons that there cannot be a list of all true statements. And although we might understand things through an account which is in fact inconsistent, the inconsistency itself contributes nothing to our understanding, because the inconsistency is in itself unintelligible, just as we said about the statement that the sky is both blue and not blue in the same way.

We might ask whether we can at least give a consistent account superior to an account which includes the inconsistencies resulting from the use of “truth.” This might very well be possible, but it appears to me that no one has actually done so. This is actually one of Lawson’s intentions with his book, but I would assert that his project fails overall, despite potentially making some real contributions. The reader is nonetheless welcome to investigate for themselves.

Advertisements

Being and Unity II

Content warning: very obscure.

This post follows up on an earlier post on this topic, as well on what was recently said about real distinction. In the latter post, we applied the distinction between the way a thing is and the way it is known in order to better understand distinction itself. We can obtain a better understanding of unity in a similar way.

As was said in the earlier post on unity, to say that something is “one” does not add anything real to the being of the thing, but it adds the denial of the division between distinct things. The single apple is not “an apple and an orange,” which are divided insofar as they are distinct from one another.

But being distinct from divided things is itself a certain way of being distinct, and consequently all that was said about distinction in general will apply to this way of being distinct as well. In particular, since being distinct means not being something, which is a way that things are understood rather than a way that they are (considered precisely as a way of being), the same thing applies to unity. To say that something is one does not add something to the way that it is, but it adds something to the way that it is understood. This way of being understood is founded, we argued, on existing relationships.

We should avoid two errors here, both of which would be expressions of the Kantian error:

First, the argument here does not mean that a thing is not truly one thing, just as the earlier discussion does not imply that it is false that a chair is not a desk. On the contrary, a chair is in fact not a desk, and a chair is in fact one chair. But when we say or think, “a chair is not a desk,” or “a chair is one chair,” we are saying these things in some way of saying, and thinking them in some way of thinking, and these ways of saying and thinking are not ways of being as such. This in no way implies that the statements themselves are false, just as “the apple seems to be red,” does not imply that the apple is not red. Arguing that the fact of a specific way of understanding implies that the thing is falsely understood would be the position described by Ayn Rand as asserting, “man is blind, because he has eyes—deaf, because he has ears—deluded, because he has a mind—and the things he perceives do not exist, because he perceives them.”

Second, the argument does not imply that the way things really are is unknown and inaccessible to us. One might suppose that this follows, since distinction cannot exist apart from someone’s way of understanding, and at the same time no one can understand without making distinctions. Consequently, someone might argue, there must be some “way things really are in themselves,” which does not include distinction or unity, but which cannot be understood. But this is just a different way of falling into the first error above. There is indeed a way things are, and it is generally not inaccessible to us. In fact, as I pointed out earlier, it would be a contradiction to assert the existence of anything entirely unknowable to us.

Our discussion, being in human language and human thought, naturally uses the proper modes of language and thought. And just as in Mary’s room, where her former knowledge of color is a way of knowing and not a way of sensing, so our discussion advances by ways of discussion, not by ways of being as such. This does not prevent the way things are from being an object of discussion, just as color can be an object of knowledge.

Having avoided these errors, someone might say that nothing of consequence follows from this account. But this would be a mistake. It follows from the present account that when we ask questions like, “How many things are here?”, we are not asking a question purely about how things are, but to some extent about how we should understand them. And even when there is a single way that things are, there is usually not only one way to understand them correctly, but many ways.

Consider some particular question of this kind: “How many things are in this room?” People might answer this question in various ways. John Nerst, in a previous discussion on this blog, seemed to suggest that the answer should be found by counting fundamental particles. Alexander Pruss would give a more complicated answer, since he suggests that large objects like humans and animals should be counted as wholes (while also wishing to deny the existence of parts, which would actually eliminate the notion of a whole), while in other cases he might agree to counting particles. Thus a human being and an armchair might be counted, more or less, as 1 + 10^28 things, namely counting the human being as one thing and the chair as a number of particles.

But if we understand that the question is not, and cannot be, purely about how things are, but is also a question about how things should be understood, then both of the above responses seem unreasonable: they are both relatively bad ways of understanding the things in the room, even if they both have some truth as well. And on the other hand, it is easy to see that “it depends on how you count,” is part of the answer. There is not one true answer to the question, but many true answers that touch on different aspects of the reality in the room.

From the discussion with John Nerst, consider this comment:

My central contention is that the rules that define the universe runs by themselves, and must therefore be self-contained, i.e not need any interpretation or operationalization from outside the system. As I think I said in one of the parts of “Erisology of Self and Will” that the universe must be an automaton, or controlled by an automaton, etc. Formal rules at the bottom.

This is isn’t convincing to you I guess but I suppose I rule out fundamental vagueness because vagueness implies complexity and fundamental complexity is a contradiction in terms. If you keep zooming in on a fuzzy picture you must, at some point, come down to sharply delineated pixels.

Among other things, the argument of the present post shows why this cannot be right. “Sharply delineated pixels” includes the distinction of one pixel from another, and therefore includes something which is a way of understanding as such, not a way of being as such. In other words, while intending to find what is really there, apart from any interpretation, Nerst is directly including a human interpretation in his account. And in fact it is perfectly obvious that anything else is impossible, since any account of reality given by us will be a human account and will thus include a human way of understanding. Things are a certain way: but that way cannot be said or thought except by using ways of speaking or thinking.

Truth in Ordinary Language

After the incident with the tall man, I make plans to meet my companion the following day. “Let us meet at sunrise tomorrow,” I say. They ask in response, “How will I know when the sun has risen?”

When it is true to say that the sun will rise, or that the sun has risen? And what it would take for such statements to be false?

Virtually no one finds themselves uncomfortable with this language despite the fact that the sun has no physical motion called “rising,” but rather the earth is rotating, giving the appearance of movement to the sun. I will ignore issues of relativity, precisely because they are evidently irrelevant. It is not just that the sun is not moving, but that we know that the physical motion of the sun one way or another is irrelevant. The rising of the sun has nothing to do with a deep physical or metaphysical account of the sun as such. Instead, it is about that thing that happens every morning. What would it take for it to be false that the sun will rise tomorrow? Well, if the earth is destroyed today, then presumably the sun will not rise tomorrow. Or if tomorrow it is dark at noon and everyone on Twitter is on an uproar about the fact that the sun is visible at the height of the sky at midnight in their part of the world, then it will have been false that the sun was going to rise in the morning. In other words, the only possible thing that could falsify the claim about the sun would be a falsification of our expectations about our experience of the sun.

As in the last post, however, this does not mean that the statement about the sun is about our expectations. It is about the sun. But the only thing it says about the sun is something like, “The sun will be and do whatever it needs to, including in relative terms, in order for our ordinary experience of a sunrise to be as it usually is.” I said something similar here about the truth of attributions of sensible qualities, such as when we say that “the banana is yellow.”

All of this will apply in general to all of our ordinary language about ourselves, our lives, and the world.

Idealized Idealization

On another occasion, I discussed the Aristotelian idea that the act of the mind does not use an organ. In an essay entitled Immaterial Aspects of Thought, James Ross claims that he can establish the truth of this position definitively. He summarizes the argument:

Some thinking (judgment) is determinate in a way no physical process can be. Consequently, such thinking cannot be (wholly) a physical process. If all thinking, all judgment, is determinate in that way, no physical process can be (the whole of) any judgment at all. Furthermore, “functions” among physical states cannot be determinate enough to be such judgments, either. Hence some judgments can be neither wholly physical processes nor wholly functions among physical processes.

Certain thinking, in a single case, is of a definite abstract form (e.g. N x N = N²), and not indeterminate among incompossible forms (see I below). No physical process can be that definite in its form in a single case. Adding cases even to infinity, unless they are all the possible cases, will not exclude incompossible forms. But supplying all possible cases of any pure function is impossible. So, no physical process can exclude incompossible functions from being equally well (or badly) satisfied (see II below). Thus, no physical process can be a case of such thinking. The same holds for functions among physical states (see IV below).

In essence, the argument is that squaring a number and similar things are infinitely precise processes, and no physical process is infinitely precise. Therefore squaring a number and similar things are not physical processes.

The problem is unfortunately with the major premise here. Squaring a number, and similar things, in the way that we in fact do them, are not infinitely precise processes.

Ross argues that they must be:

Can judgments really be of such definite “pure” forms? They have to be; otherwise, they will fail to have the features we attribute to them and upon which the truth of certain judgments about validity, inconsistency, and truth depend; for instance, they have to exclude incompossible forms or they would lack the very features we take to be definitive of their sorts: e.g., conjunction, disjunction, syllogistic, modus ponens, etc. The single case of thinking has to be of an abstract “form” (a “pure” function) that is not indeterminate among incompossible ones. For instance, if I square a number–not just happen in the course of adding to write down a sum that is a square, but if I actually square the number–I think in the form “N x N = N².”

The same point again. I can reason in the form, modus ponens (“If p then q“; “p“; “therefore, q”). Reasoning by modus ponens requires that no incompossible forms also be “realized” (in the same sense) by what I have done. Reasoning in that form is thinking in a way that is truth-preserving for all cases that realize the form. What is done cannot, therefore, be indeterminate among structures, some of which are not truth preserving. That is why valid reasoning cannot be only an approximation of the form, but must be of the form. Otherwise, it will as much fail to be truth-preserving for all relevant cases as it succeeds; and thus the whole point of validity will be lost. Thus, we already know that the evasion, “We do not really conjoin, add, or do modus ponens but only simulate them,” cannot be correct. Still, I shall consider it fully below.

“It will as much fail to be truth-preserving for all relevant cases as it succeeds” is an exaggeration here. If you perform an operation which approximates modus ponens, then that operation will be approximately truth preserving. It will not be equally truth preserving and not truth preserving.

I have noted many times in the past, as for example here, here, here, and especially here, that following the rules of syllogism does not in practice infallibly guarantee that your conclusions are true, even if your premises are in some way true, because of the vagueness of human thought and language. In essence, Ross is making a contrary argument: we know, he is claiming, that our arguments infallibly succeed; therefore our thoughts cannot be vague. But it is empirically false that our arguments infallibly succeed, so the argument is mistaken right from its starting point.

There is also a strawmanning of the opposing position here insofar as Ross describes those who disagree with him as saying that “we do not really conjoin, add, or do modus ponens but only simulate them.” This assumes that unless you are doing these things perfectly, rather than approximating them, then you are not doing them at all. But this does not follow. Consider a triangle drawn on a blackboard. Consider which of the following statements is true:

  1. There is a triangle drawn on the blackboard.
  2. There is no triangle drawn on the blackboard.

Obviously, the first statement is true, and the second false. But in Ross’s way of thinking, we would have to say, “What is on the blackboard is only approximately triangular, not exactly triangular. Therefore there is no triangle on the blackboard.” This of course is wrong, and his description of the opposing position is wrong in the same way.

Naturally, if we take “triangle” as shorthand for “exact rather than approximate triangle” then (2) will be true. And in a similar way, if take “really conjoin” and so on as shorthand for “really conjoin exactly and not approximately,” then those who disagree will indeed say that we do not do those things. But this is not a problem unless you are assuming from the beginning that our thoughts are infinitely precise, and Ross is attempting to establish that this must be the case, rather than claiming to take it as given. (That is, the summary takes it as given, but Ross attempts throughout the article to establish it.)

One could attempt to defend Ross’s position as follows: we must have infinitely precise thoughts, because we can understand the words “infinitely precise thoughts.” Or in the case of modus ponens, we must have an infinitely precise understanding of it, because we can distinguish between “modus ponens, precisely,” and “approximations of modus ponens“. But the error here is similar to the error of saying that one must have infinite certainty about some things, because otherwise one will not have infinite certainty about the fact that one does not have infinite certainty, as though this were a contradiction. It is no contradiction for all of your thoughts to be fallible, including this one, and it is no contradiction for all of your thoughts to be vague, including your thoughts about precision and approximation.

The title of this post in fact refers to this error, which is probably the fundamental problem in Ross’s argument. Triangles in the real world are not perfectly triangular, but we have an idealized concept of a triangle. In precisely the same way, the process of idealization in the real world is not an infinitely precise process, but we have an idealized concept of idealization. Concluding that our acts of idealization must actually be ideal in themselves, simply because we have an idealized concept of idealization, would be a case of confusing the way of knowing with the way of being. It is a particularly confusing case simply because the way of knowing in this case is also materially the being which is known. But this material identity does not make the mode of knowing into the mode of being.

We should consider also Ross’s minor premise, that a physical process cannot be determinate in the way required:

Whatever the discriminable features of a physical process may be, there will always be a pair of incompatible predicates, each as empirically adequate as the other, to name a function the exhibited data or process “satisfies.” That condition holds for any finite actual “outputs,” no matter how many. That is a feature of physical process itself, of change. There is nothing about a physical process, or any repetitions of it, to block it from being a case of incompossible forms (“functions”), if it could be a case of any pure form at all. That is because the differentiating point, the point where the behavioral outputs diverge to manifest different functions, can lie beyond the actual, even if the actual should be infinite; e.g., it could lie in what the thing would have done, had things been otherwise in certain ways. For instance, if the function is x(*)y = (x + y, if y < 10^40 years, = x + y +1, otherwise), the differentiating output would lie beyond the conjectured life of the universe.

Just as rectangular doors can approximate Euclidean rectangularity, so physical change can simulate pure functions but cannot realize them. For instance, there are no physical features by which an adding machine, whether it is an old mechanical “gear” machine or a hand calculator or a full computer, can exclude its satisfying a function incompatible with addition, say quaddition (cf. Kripke’s definition of the function to show the indeterminacy of the single case: quus, symbolized by the plus sign in a circle, “is defined by: x quus y = x + y, if x, y < 57, =5 otherwise”) modified so that the differentiating outputs (not what constitutes the difference, but what manifests it) lie beyond the lifetime of the machine. The consequence is that a physical process is really indeterminate among incompatible abstract functions.

Extending the list of outputs will not select among incompatible functions whose differentiating “point” lies beyond the lifetime (or performance time) of the machine. That, of course, is not the basis for the indeterminacy; it is just a grue-like illustration. Adding is not a sequence of outputs; it is summing; whereas if the process were quadding, all its outputs would be quadditions, whether or not they differed in quantity from additions (before a differentiating point shows up to make the outputs diverge from sums).

For any outputs to be sums, the machine has to add. But the indeterminacy among incompossible functions is to be found in each single case, and therefore in every case. Thus, the machine never adds.

There is some truth here, and some error here. If we think about a physical process in the particular way that Ross is considering it, it will be true that it will always be able to be interpreted in more than one way. This is why, for example, in my recent discussion with John Nerst, John needed to say that the fundamental cause of things had to be “rules” rather than e.g. fundamental particles. The movement of particles, in itself, could be interpreted in various ways. “Rules,” on the other hand, are presumed to be something which already has a particular interpretation, e.g. adding as opposed to quadding.

On the other hand, there is also an error here. The prima facie sign of this error is the statement that an adding machine “never adds.” Just as according to common sense we can draw triangles on blackboards, so according to common sense the calculator on my desk can certainly add. This is connected with the problem with the entire argument. Since “the calculator can add” is true in some way, there is no particular reason that “we can add” cannot be true in precisely the same way. Ross wishes to argue that we can add in a way that the calculator cannot because, in essence, we do it infallibly; but this is flatly false. We do not do it infallibly.

Considered metaphysically, the problem here is ignorance of the formal cause. If physical processes were entirely formless, they indeed would have no interpretation, just as a formless human (were that possible) would be a philosophical zombie. But in reality there are forms in both cases. In this sense, Ross’s argument comes close to saying “human thought is a form or formed, but physical processes are formless.” Since in fact neither is formless, there is no reason (at least established by this argument) why thought could not be the form of a physical process.

 

The Self and Disembodied Predictive Processing

While I criticized his claim overall, there is some truth in Scott Alexander’s remark that “the predictive processing model isn’t really a natural match for embodiment theory.” The theory of “embodiment” refers to the idea that a thing’s matter contributes in particular ways to its functioning; it cannot be explained by its form alone. As I said in the previous post, the human mind is certainly embodied in this sense. Nonetheless, the idea of predictive processing can suggest something somewhat disembodied. We can imagine the following picture of Andy Clark’s view:

Imagine the human mind as a person in an underground bunker. There is a bank of labelled computer screens on one wall, which portray incoming sensations. On another computer, the person analyzes the incoming data and records his predictions for what is to come, along with the equations or other things which represent his best guesses about the rules guiding incoming sensations.

As time goes on, his predictions are sometimes correct and sometimes incorrect, and so he refines his equations and his predictions to make them more accurate.

As in the previous post, we have here a “barren landscape.” The person in the bunker originally isn’t trying to control anything or to reach any particular outcome; he is just guessing what is going to appear on the screens. This idea also appears somewhat “disembodied”: what the mind is doing down in its bunker does not seem to have much to do with the body and the processes by which it is obtaining sensations.

At some point, however, the mind notices a particular difference between some of the incoming streams of sensation and the rest. The typical screen works like the one labelled “vision.” And there is a problem here. While the mind is pretty good at predicting what comes next there, things frequently come up which it did not predict. No matter how much it improves its rules and equations, it simply cannot entirely overcome this problem. The stream is just too unpredictable for that.

On the other hand, one stream labelled “proprioception” seems to work a bit differently. At any rate, extreme unpredicted events turn out to be much rarer. Additionally, the mind notices something particularly interesting: small differences to prediction do not seem to make much difference to accuracy. Or in other words, if it takes its best guess, then arbitrarily modifies it, as long as this is by a small amount, it will be just as accurate as its original guess would have been.

And thus if it modifies it repeatedly in this way, it can get any outcome it “wants.” Or in other words, the mind has learned that it is in control of one of the incoming streams, and not merely observing it.

This seems to suggest something particular. We do not have any innate knowledge that we are things in the world and that we can affect the world; this is something learned. In this sense, the idea of the self is one that we learn from experience, like the ideas of other things. I pointed out elsewhere that Descartes is mistaken to think the knowledge of thinking is primary. In a similar way, knowledge of self is not primary, but reflective.

Hellen Keller writes in The World I Live In (XI):

Before my teacher came to me, I did not know that I am. I lived in a world that was a no-world. I cannot hope to describe adequately that unconscious, yet conscious time of nothingness. I did not know that I knew aught, or that I lived or acted or desired. I had neither will nor intellect. I was carried along to objects and acts by a certain blind natural impetus. I had a mind which caused me to feel anger, satisfaction, desire. These two facts led those about me to suppose that I willed and thought. I can remember all this, not because I knew that it was so, but because I have tactual memory.

When I wanted anything I liked, ice cream, for instance, of which I was very fond, I had a delicious taste on my tongue (which, by the way, I never have now), and in my hand I felt the turning of the freezer. I made the sign, and my mother knew I wanted ice-cream. I “thought” and desired in my fingers.

Since I had no power of thought, I did not compare one mental state with another. So I was not conscious of any change or process going on in my brain when my teacher began to instruct me. I merely felt keen delight in obtaining more easily what I wanted by means of the finger motions she taught me. I thought only of objects, and only objects I wanted. It was the turning of the freezer on a larger scale. When I learned the meaning of “I” and “me” and found that I was something, I began to think. Then consciousness first existed for me.

Helen Keller’s experience is related to the idea of language as a kind of technology of thought. But the main point is that she is quite literally correct in saying that she did not know that she existed. This does not mean that she had the thought, “I do not exist,” but rather that she had no conscious thought about the self at all. Of course she speaks of feeling desire, but that is precisely as a feeling. Desire for ice cream is what is there (not “what I feel,” but “what is”) before the taste of ice cream arrives (not “before I taste ice cream.”)

 

The Practical Argument for Free Will

Richard Chappell discusses a practical argument for free will:

1) If I don’t have free will, then I can’t choose what to believe.
2) If I can choose what to believe, then I have free will [from 1]
3) If I have free will, then I ought to believe it.
4) If I can choose what to believe, then I ought to believe that I have free will. [from 2,3]
5) I ought, if I can, to choose to believe that I have free will. [restatement of 4]

He remarks in the comments:

I’m taking it as analytic (true by definition) that choice requires free will. If we’re not free, then we can’t choose, can we? We might “reach a conclusion”, much like a computer program does, but we couldn’t choose it.

I understand the word “choice” a bit differently, in that I would say that we are obviously choosing in the ordinary sense of the term, if we consider two options which are possible to us as far as we know, and then make up our minds to do one of them, even if it turned out in some metaphysical sense that we were already guaranteed in advance to do that one. Or in other words, Chappell is discussing determinism vs libertarian free will, apparently ruling out compatibilist free will on linguistic grounds. I don’t merely disagree in the sense that I use language differently, but in the sense that I don’t agree that his usage correspond to the normal English usage. [N.B. I misunderstood Richard here. He explains in the comments.] Since people can easily be led astray by such linguistic confusions, given the relationships between thought and language, I prefer to reformulate the argument:

  1. If I don’t have libertarian free will, then I can’t make an ultimate difference in what I believe that was not determined by some initial conditions.
  2. If I can make an ultimate difference in what I believe that was not determined by some initial conditions, then I have libertarian free will [from 1].
  3. If I have libertarian free will, then it is good to believe that I have it.
  4. If I can make an ultimate difference in my beliefs undetermined by initial conditions, then it is good to believe that I have libertarian free will. [from 2, 3]
  5. It is good, if I can, to make a difference in my beliefs undetermined by initial conditions, such that I believe that I have libertarian free will.

We would have to add that the means that can make such a difference, if any means can, would be choosing to believe that I have libertarian free will.

I have reformulated (3) to speak of what is good, rather than of what one ought to believe, for several reasons. First, in order to avoid confusion about the meaning of “ought”. Second, because the resolution of the argument lies here.

The argument is in fact a good argument as far as it goes. It does give a practical reason to hold the voluntary belief that one has libertarian free will. The problem is that it does not establish that it is better overall to hold this belief, because various factors can contribute to whether an action or belief is a good thing.

We can see this with the following thought experiment:

Either people have libertarian free will or they do not. This is unknown. But God has decreed that people who believe that they have libertarian free will go to hell for eternity, while people who believe that they do not, will go to heaven for eternity.

This is basically like the story of the Alien Implant. Having libertarian free will is like the situation where the black box is predicting your choice, and not having it is like the case where the box is causing your choice. The better thing here is to believe that you do not have libertarian free will, and this is true despite whatever theoretical sense you might have that you are “not responsible” for this belief if it is true, just as it is better not to smoke even if you think that your choice is being caused.

But note that if a person believes that he has libertarian free will, and it turns out to be true, he has some benefit from this, namely the truth. But the evil of going to hell presumably outweighs this benefit. And this reveals the fundamental problem with the argument, namely that we need to weigh the consequences overall. We made the consequences heaven and hell for dramatic effect, but even in the original situation, believing that you have libertarian free will when you do not, has an evil effect, namely believing something false, and potentially many evil effects, namely whatever else follows from this falsehood. This means that in order to determine what is better to believe here, it is necessary to consider the consequences of being mistaken, just as it is in general when one formulates beliefs.

Semi-Parmenidean Heresy

In his book The Big Picture, Sean Carroll describes the view which he calls “poetic naturalism”:

As knowledge generally, and science in particular, have progressed over the centuries, our corresponding ontologies have evolved from quite rich to relatively sparse. To the ancients, it was reasonable to believe that there were all kinds of fundamentally different things in the world; in modern thought, we try to do more with less.

We would now say that Theseus’s ship is made of atoms, all of which are made of protons, neutrons, and electrons-exactly the same kinds of particles that make up every other ship, or for that matter make up you and me. There isn’t some primordial “shipness” of which Theseus’s is one particular example; there are simply arrangements of atoms, gradually changing over time.

That doesn’t mean we can’t talk about ships just because we understand that they are collections of atoms. It would be horrendously inconvenient if, anytime someone asked us a question about something happening in the world, we limited our allowable responses to a listing of a huge set of atoms and how they were arranged. If you listed about one atom per second, it would take more than a trillion times the current age of the universe to describe a ship like Theseus’s. Not really practical.

It just means that the notion of a ship is a derived category in our ontology, not a fundamental one. It is a useful way of talking about certain subsets of the basic stuff of the universe. We invent the concept of a ship because it is useful to us, not because it’s already there at the deepest level of reality. Is it the same ship after we’ve gradually replaced every plank? I don’t know. It’s up to us to decide. The very notion of “ship” is something we created for our own convenience.

That’s okay. The deepest level of reality is very important; but all the different ways we have of talking about that level are important too.

There is something essentially pre-Socratic about this thinking. When Carroll talks about “fundamentally different things,” he means things that differ according to their basic elements. But at the same kind the implication is that only things that differ in this way are “fundamentally” different in the sense of being truly or really different. But this is a quite different sense of “fundamental.”

I suggested in the linked post that even Thales might not really have believed that material causes alone sufficiently explained reality. Nonetheless, there was a focus on the material cause as being the truest explanation. We see the same focus here in Sean Carroll. When he says, “There isn’t some primordial shipness,” he is thinking of shipness as something that would have to be a material cause, if it existed.

Carroll proceeds to contrast his position with eliminativism:

One benefit of a rich ontology is that it’s easy to say what is “real”- every category describes something real. In a sparse ontology, that’s not so clear. Should we count only the underlying stuff of the world as real, and all the different ways we have of dividing it up and talking about it as merely illusions? That’s the most hard-core attitude we could take to reality, sometimes called eliminativism, since its adherents like nothing better than to go around eliminating this or that concept from our list of what is real. For an eliminativist, the question “Which Captian Kirk is the real one?” gets answered by, “Who cares? People are illusions. They’re just fictitious stories we tell about the one true world.”

I’m going to argue for a different view: our fundamental ontology, the best way we have of talking about the world at the deepest level, is extremely sparse. But many concepts that are part of non-fundamental ways we have of talking about the world- useful ideas describing higher-level, macroscopic reality- deserve to be called “real.”

The key word there is “useful.” There are certainly non-useful ways of talking about the world. In scientific contexts, we refer to such non-useful ways as “wrong” or “false.” A way of talking isn’t just a list of concepts; it will generally include a set of rules for using them, and relationships among them. Every scientific theory is a way of talking about the world, according to which we can say things like “There are things called planets, and something called the sun, all of which move through something called space, and planets do something called orbiting the sun, and those orbits describe a particular shape in space called an ellipse.” That’s basically Johannes Kepler’s theory of planetary motion, developed after Copernicus argued for the sun being at the center of the solar system but before Isaac Newton explained it all in terms of the force of gravity. Today, we would say that Kepler’s theory is fairly useful in certain circumstances, but it’s not as useful as Newton’s, which in turn isn’t as broadly useful as Einstein’s general theory of relativity.

A poetic naturalist will agree that both Captain Kirk and the Ship of Theseus are simply ways of talking about certain collections of atoms stretching through space and time. The difference is that an eliminativist will say “and therefore they are just illusions,” while the poetic naturalist says “but they are no less real for all of that.”

There are some good things about what Carroll is doing here. He is right of course to insist that the things of common experience are “real.” He is also right to see some relationship between saying that something is real and saying that talking about it is useful, but this is certainly worth additional consideration, and he does not really do it justice.

The problematic part is that, on account of his pre-Socratic tendencies, he is falling somewhat into the error of Parmenides. The error of Parmenides was to suppose that being can be, and can be thought and said, in only one way. Carroll, on account of confusing the various meanings of “fundamental,” supposes that being can be in only one way, namely as something elemental, but that it can be thought and said in many ways.

The problem with this, apart from the falsity of asserting that being can be in only one way, is that no metaphysical account is given whereby it would be reasonable to say that being can be thought and said in many ways, given that it can be in only one way. Carroll is trying to point in that direction by saying that our common speech is useful, so it must be about real things; but the eliminativist would respond, “Useful to whom? The things that you are saying this is useful for are illusions and do not exist. So even your supposed usefulness does not exist.” And Carroll will have no valid response, because he has already admitted to agreeing with the eliminativist on a metaphysical level.

The correct answer to this is the one given by Aristotle. Material causes do not sufficiently explain reality, but other causes are necessary as well. But this means that the eliminativist is mistaken on a metaphysical level, not merely in his way of speaking.