Zeal for God, But Not According to Knowledge

St. Thomas raises this objection to the existence of God:

Objection 2. Further, it is superfluous to suppose that what can be accounted for by a few principles has been produced by many. But it seems that everything we see in the world can be accounted for by other principles, supposing God did not exist. For all natural things can be reduced to one principle which is nature; and all voluntary things can be reduced to one principle which is human reason, or will. Therefore there is no need to suppose God’s existence.

He responds to the objection:

Since nature works for a determinate end under the direction of a higher agent, whatever is done by nature must needs be traced back to God, as to its first cause. So also whatever is done voluntarily must also be traced back to some higher cause other than human reason or will, since these can change or fail; for all things that are changeable and capable of defect must be traced back to an immovable and self-necessary first principle, as was shown in the body of the Article.

The explanation here is that things do have their own proper causes, but these proper causes do not have the properties necessary to be a first cause. Likewise, the very distinction of these proper causes from one another shows that they must be reduced to a one single principle.

This response is correct, but it is difficult for people to understand. People tend to assume that the objection is fundamentally valid, given its premises. Thus many atheists believe that they have a very good argument for their atheism, and many theists assume that there must be falsehood in the premises. And the ordinary way to assume this is to say that we do see things in the world that cannot be accounted for by other principles.

This leads to an undue zeal on behalf of God, of the sort mentioned in the previous post. There is the desire to say that something was done by God, and only by God; not by anything else. In this way the premise that “everything we see in the world can be accounted for by other principles” would turn out to be false. The Intelligent Design movement provides an example of this desire. The linked Wikipedia article approaches this with a very polemical point of view, but I am not concerned here with the scientific issues. It is very evident, in any case, that there is the idea here that it would be good to prove that something was done by God alone, and not by any secondary causes. In this way people are jealous on behalf of God: if it turns out that it was done by secondary causes, that takes something from God, and in particular it makes it less likely that God exists.

The truth is mostly the opposite of this. Although nothing can be taken from God, the purposes of creation are better obtained if created things contribute whatever they can to the production of other things. Thus the world is more ordered, and so more perfect simply speaking.

As an example, consider the case of the origin of life. Unlike the process which gave rise to the origin of species, abiogenesis is not an established fact. What would be best, were it the case? I do not speak of the truth of the matter, nor what we might wish to believe about it, but which thing would be better in itself: is it better if life arises from non-living things, or is it better if life is directly created by God? For someone jealous for God in this way, it seems better if life were directly created, in order better to prove that God exists. In reality, however, it is better if life comes to be in a certain order, with a contribution from non-living things, to whatever degree that this is possible.

This is not just a matter of wishful thinking, in one direction or the other, although that can be involved. Rather, in cases of this kind, the fact that one thing is better is an argument, although not a conclusive one, for its reality.

There are many other ways in which this kind of undue zeal influences human opinions, and recognition of the truth of this matter has many consequences. But for the moment we are on another path.

Advertisements

Telephone Game

Victor Reppert says at his blog,

1. If the initial explosion of the big bang had differed in strength by as little as one part in 10\60, the universe would have either quickly collapsed back on itself, or
expanded [too] rapidly for stars to form. In either case, life would be impossible.
2. (An accuracy of one part in 10 to the 60th power can be compared to firing a bullet at a one-inch target on the other side of the observable universe, twenty billion light years away, and hitting the target.)

The claim seems a bit strong. Let x be a measurement in some units of the strength of “the inital explosion of the big bang.” Reppert seems to be saying that if x were increased or decreased by x / (10^60), then the universe would have either collapsed immediately, or it would have expanded without forming stars, so that life would have been impossible.

It’s possible that someone could make a good argument for that claim. But the most natural argument for that claim would be to say something like this, “We know that x had to fall between y and z in order to produce stars, and y and z are so close together that if we increased or decreased x by one part in 10^60, it would fall outside y and z.” But this will not work unless x is already known to fall between y and z. And this implies that we have measured x to a precision of 60 digits.

I suspect that no one, ever, has measured any physical thing to a precision of 60 digits, using any units or any form of measurement. This suggests that something about Reppert’s claim is a bit off.

In any case, the fact that 10^60 is expressed by “10\60”, and the fact that Reppert omits the word “too” mean that we can trace his claim fairly precisely. Searching Google for the exact sentence, we get this page as the first result, from November 2011. John Piippo says there:

1. If the initial explosion of the big bang had differed in strength by as little as one part in 10\60, the universe would have either quickly collapsed back on itself, or expanded [too] rapidly for stars to form. In either case, life would be impossible. (An accuracy of one part in 10 to the 60th power can be compared to firing a bullet at a one-inch target on the other side of the observable universe, twenty billion light years away, and hitting the target.)

Reppert seems to have accidentally or deliberately divided this into two separate points; number 2 in his list does not make sense except as an observation on the first, as it is found here. Piippo likewise omits the word “too,” strongly suggesting that Piippo is the direct source for Reppert, although it is also possible that both borrowed from a third source.

We find an earlier form of the claim here, made by Robin Collins. It appears to date from around 1998, given the statement, “This work was made possible in part by a Discovery Institute grant for the fiscal year 1997-1998.” Here the claim stands thus:

1. If the initial explosion of the big bang had differed in strength by as little as 1 part in 1060, the universe would have either quickly collapsed back on itself, or expanded too rapidly for stars to form. In either case, life would be impossible. [See Davies, 1982, pp. 90-91. (As John Jefferson Davis points out (p. 140), an accuracy of one part in 1060 can be compared to firing a bullet at a one-inch target on the other side of the observable universe, twenty billion light years away, and hitting the target.)

Here we still have the number “1.”, and the text is obviously the source for the later claims, but the word “too” is present in this version, and the claims are sourced. He refers to The Accidental Universe by Paul Davies. Davies says on page 88:

It follows from (4.13) that if p > p_crit then > 0, the universe is spatially closed, and will eventually contract. The additional gravity of the extra-dense matter will drag the galaxies back on themselves. For p_crit, the gravity of the cosmic matter is weaker and the universe ‘escapes’, expanding unchecked in much the same way as a rapidly receding projectile. The geometry of the universe, and its ultimate fate, thus depends on the density of matter or, equivalently, on the total number of particles in the universe, N. We are now able to grasp the full significance of the coincidence (4.12). It states precisely that nature has chosen to have a value very close to that required to yield a spatially flat universe, with = 0 and p = p_crit.

Then, at the end of page 89, he says this:

At the Planck time – the earliest epoch at which we can have any confidence in the theory – the ratio was at most an almost infinitesimal 10-60. If one regards the Planck time as the initial moment when the subsequent cosmic dynamics were determined, it is necessary to suppose that nature chose to differ from p_crit by no more than one part in 1060.

Here we have our source. “The ratio” here refers to (p – p_crit) / p_crit. In order for the ratio to be this small, has to be almost equal to p_crit. In fact, Davies says that this ratio is proportional to time. If we set time = 0, then we would get a ratio of exactly 0, so that p = p_crit. Davies rightly states that the physical theories in question cannot work this way: under the theory of the Big Bang, we cannot discuss the state of the universe at t = 0 and expect to get sensible results. Nonetheless, this suggests that something is wrong with the idea that anything has been calibrated to one part in 1060. Rather, two values have started out basically equal and grown apart throughout time, so that if you choose an extremely small value of time, you get an extremely small difference in the two values.

This also verifies my original suspicion. Nothing has been measured to a precision of 60 digits, and a determination made that the number measured could not vary by one iota. Instead, Davies has simply taken a ratio that is proportional to time, and calculated its value with a very small value of time.

 

There is a real issue here, and it is the question, “Why is the universe basically flat?” But whatever the answer to this question may be, the question, and presumably its answer, are quite different from the claim that physics contains constants that are constrained to the level of “one part in 1060.” To put this another way: if you answer the question, “Why is the universe flat?” with a response of the form, “Because = 1892592714.2256399288581158185662151865333331859591, and if it had been the slightest amount more or less than this, the universe would not have been flat,” then your answer is very likely wrong. There is likely to be a simpler and more general answer to the question.

Reppert in fact agrees, and that is the whole point of his argument. For him, the simpler and more general answer is that God planned it that way. That may be, but it should be evident that there is nothing that demands either this answer or an answer of the above form. There could be any number of potential answers.

Playing the telephone game and expecting to get a sensible result is a bad idea. If you take a statement from someone else and restate it without a source, and your source itself has no source, it is quite possible that your statement is wrong and that the original claim was quite different. Even apart from this, however, Reppert is engaging in a basically mistaken enterprise. In essence, he is making a philosophical argument, but attempting to give the appearance of supporting it with physics and mathematics. This is presumably because these topics are less remote from the senses. If Reppert can convince you that his argument is supported by physics and mathematics, you will be likely to think that reasonable disagreement with his position is impossible. You will be less likely to be persuaded if you recognize that his argument remains a philosophical one.

There are philosophical arguments for the existence of God, and this blog has discussed such arguments. But these arguments belong to philosophy, not to science.

 

 

 

 

Remote From My Senses

Earlier we saw that opinions about things more remote from the senses are more likely to be influenced by motives apart from truth. However, even if in principle a thing would have many obvious empirical consequences, it is possible that those consequences are quite unclear to me, or perhaps those consequences could only be seen by others. In such a case the matter may be remote from the senses in a personal way; I do not personally see how it would make a difference to me either way, or it can make such a difference to others, but not to me.

For example, Fermat’s Last Theorem was proven by Andrew Wiles in 1994. If the theorem were false, in principle this would surely have empirical consequences. But the proof is complex enough that this is basically a theoretical rather than a practical statement. Someone who is not a mathematician, or anyone who was not verified the proof for himself, simply has to trust mathematicians as a body about the fact that the proof is valid. Even for those mathematicians who have verified the proof for themselves, most likely they are more confident that it is true based on their trust in the community of mathematicians than in their own effort to verify it. If I am a mathematician who has verified it, I could easily have made a mistake. But it would be less likely that the same or similar mistakes were made by every single mathematician who tried.

In a sense, then, Fermat’s Last Theorem is somewhat remote from the senses for every individual person, including mathematicians. So why do we not see widespread disagreement about it, disagreement of the kind we see in politics and religion?

If Fermat’s Last Theorem were false, this would require either a conspiracy theory, or a quasi-conspiracy theory.

The conspiracy theory, of course, would be that mathematicians as a body know that Fermat’s Last Theorem is false, but do not want everyone else to know this, so they claim that they have verified the proof and found it valid, while in reality there are flaws in it and they know about them.

The quasi-conspiracy theory would be that mathematicians as a body believe that Fermat’s Last Theorem is true, but that they consistently fail in their attempt to verify the proof. There is a mistake in it, but each time someone tries to verify it, they fail to notice the mistake.

The reason to call this a quasi-conspiracy theory is that the most reasonable way for this to happen is if mathematicians as a body have motivations similar to the mathematicians in the case of the actual conspiracy, motivations that cause them to behave in much the same ways in practice.

We can see this by considering a case where you would have an actual conspiracy. Suppose a seven year old child is told by his parents that Santa Claus is the one who brings presents on Christmas Eve. The child believes them. When he speaks with his playmates, they tell him the same thing. If he notices something odd, his parents explain it away. He asks other adults about it, and they say the same thing.

The adults as a body are deceiving the child about the fact that Santa Claus does not exist, and they are doing this by means of an actual conspiracy. They know there is no Santa Claus, but they are working together to ensure that the child believes that there is one.

What is necessary for this to happen? It is necessary that the adults have a motive quite remote from truth for wishing the child to believe that there is a Santa Claus, and it is on account of this motive that they engage in the conspiracy.

In a similar way, suppose that mathematicians as a body were deluded about Fermat’s Last Theorem. Since they are actually deluded, there is no actual conspiracy. But how did this happen? Why do they all make mistakes when they try to verify the theorem? In principle it might simply be that the question is very hard, and there is a mistake that is extremely difficult to notice. And in reality, this may be the only likely way for this to happen in the case of mathematics. But in other cases, there may be a more plausible mechanism to generate consistent mistakes, and this is wishful thinking of one kind or another. If mathematicians as a body want Fermat’s Last Theorem to be true and to be a settled question, they may carelessly overlook mistakes in the proof, in order to say that it is true. Technically they are not making a deliberate mistake. But in practice it is the lack of care about truth, and the interest in something opposed to truth, which makes them act as a body to deceive others, just as an actual conspiracy does.

Scientists as a body believe that the theory of evolution is true, and that it is very certain. Wikipedia illustrates this:

The Discovery Institute announced that over 700 scientists had expressed support for intelligent design as of February 8, 2007. This prompted the National Center for Science Education to produce a “light-hearted” petition called “Project Steve” in support of evolution. Only scientists named “Steve” or some variation (such as Stephen, Stephanie, and Stefan) are eligible to sign the petition. It is intended to be a “tongue-in-cheek parody” of the lists of alleged “scientists” supposedly supporting creationist principles that creationist organizations produce. The petition demonstrates that there are more scientists who accept evolution with a name like “Steve” alone (over 1370) than there are in total who support intelligent design.

But there are many, like Fr. Brian Harrison, who think that the scientists are wrong about this. The considerations of this post make clear why it is possible for someone to believe this. If Fr. Harrison is right, scientists as a body would be engaging in a quasi-conspiracy. Many scientists are atheists, and perhaps they would like evolution to be true because they think it makes atheism more plausible. Perhaps such motivations, together with the motive of sticking together with other scientists, sufficiently explain why scientists are misinterpreting the evidence to support evolution, even though it does not actually support it.

If I have not studied the evidence for evolution myself, this argument is much more plausible than the same claim about Fermat’s Last Theorem, simply because there is no actually plausible motive in the mathematical case. But if there were a plausible motive, one would be likely to see such quasi-conspiracy theories about mathematical claims as well.