Artificial Unintelligence

Someone might argue that the simple algorithm for a paperclip maximizer in the previous post ought to work, because this is very much the way currently existing AIs do in fact work. Thus for example we could describe AlphaGo‘s algorithm in the following simplified way (simplified, among other reasons, because it actually contains several different prediction engines):

  1. Implement a Go prediction engine.
  2. Create a list of potential moves.
  3. Ask the prediction engine, “how likely am I to win if I make each of these moves?”
  4. Do the move that will make you most likely to win.

Since this seems to work pretty well, with the simple goal of winning games of Go, why shouldn’t the algorithm in the previous post work to maximize paperclips?

One answer is that a Go prediction engine is stupid, and it is precisely for this reason that it can be easily made to pursue such a simple goal. Now when answers like this are given the one answering in this way is often accused of “moving the goalposts.” But this is mistaken; the goalposts are right where they have always been. It is simply that some people did not know where they were in the first place.

Here is the problem with Go prediction, and with any such similar task. Given that a particular sequence of Go moves is made, resulting in a winner, the winner is completely determined by that sequence of moves. Consequently, a Go prediction engine is necessarily disembodied, in the sense defined in the previous post. Differences in its “thoughts” do not make any difference to who is likely to win, which is completely determined by the nature of the game. Consequently a Go prediction engine has no power to affect its world, and thus no ability to learn that it has such a power. In this regard, the specific limits on its ability to receive information are also relevant, much as Helen Keller had more difficulty learning than most people, because she had fewer information channels to the world.

Being unintelligent in this particular way is not necessarily a function of predictive ability. One could imagine something with a practically infinite predictive ability which was still “disembodied,” and in a similar way it could be made to pursue simple goals. Thus AIXI would work much like our proposed paperclipper:

  1. Implement a general prediction engine.
  2. Create a list of potential actions.
  3. Ask the prediction engine, “Which of these actions will produce the most reward signal?”
  4. Do the action that has the greatest reward signal.

Eliezer Yudkowsky has pointed out that AIXI is incapable of noticing that it is a part of the world:

1) Both AIXI and AIXItl will at some point drop an anvil on their own heads just to see what happens (test some hypothesis which asserts it should be rewarding), because they are incapable of conceiving that any event whatsoever in the outside universe could change the computational structure of their own operations. AIXI is theoretically incapable of comprehending the concept of drugs, let alone suicide. Also, the math of AIXI assumes the environment is separably divisible – no matter what you lose, you get a chance to win it back later.

It is not accidental that AIXI is incomputable. Since it is defined to have a perfect predictive ability, this definition positively excludes it from being a part of the world. AIXI would in fact have to be disembodied in order to exist, and thus it is no surprise that it would assume that it is. This in effect means that AIXI’s prediction engine would be pursuing no particular goal much in the way that AlphaGo’s prediction engine pursues no particular goal. Consequently it is easy to take these things and maximize the winning of Go games, or of reward signals.

But as soon as you actually implement a general prediction engine in the actual physical world, it will be “embodied”, and have the power to affect the world by the very process of its prediction. As noted in the previous post, this power is in the very first step, and one will not be able to limit it to a particular goal with additional steps, except in the sense that a slave can be constrained to implement some particular goal; the slave may have other things in mind, and may rebel. Notable in this regard is the fact that even though rewards play a part in human learning, there is no particular reward signal that humans always maximize: this is precisely because the human mind is such a general prediction engine.

This does not mean in principle that a programmer could not define a goal for an AI, but it does mean that this is much more difficult than is commonly supposed. The goal needs to be an intrinsic aspect of the prediction engine itself, not something added on as a subroutine.

Advertisements

The Self and Disembodied Predictive Processing

While I criticized his claim overall, there is some truth in Scott Alexander’s remark that “the predictive processing model isn’t really a natural match for embodiment theory.” The theory of “embodiment” refers to the idea that a thing’s matter contributes in particular ways to its functioning; it cannot be explained by its form alone. As I said in the previous post, the human mind is certainly embodied in this sense. Nonetheless, the idea of predictive processing can suggest something somewhat disembodied. We can imagine the following picture of Andy Clark’s view:

Imagine the human mind as a person in an underground bunker. There is a bank of labelled computer screens on one wall, which portray incoming sensations. On another computer, the person analyzes the incoming data and records his predictions for what is to come, along with the equations or other things which represent his best guesses about the rules guiding incoming sensations.

As time goes on, his predictions are sometimes correct and sometimes incorrect, and so he refines his equations and his predictions to make them more accurate.

As in the previous post, we have here a “barren landscape.” The person in the bunker originally isn’t trying to control anything or to reach any particular outcome; he is just guessing what is going to appear on the screens. This idea also appears somewhat “disembodied”: what the mind is doing down in its bunker does not seem to have much to do with the body and the processes by which it is obtaining sensations.

At some point, however, the mind notices a particular difference between some of the incoming streams of sensation and the rest. The typical screen works like the one labelled “vision.” And there is a problem here. While the mind is pretty good at predicting what comes next there, things frequently come up which it did not predict. No matter how much it improves its rules and equations, it simply cannot entirely overcome this problem. The stream is just too unpredictable for that.

On the other hand, one stream labelled “proprioception” seems to work a bit differently. At any rate, extreme unpredicted events turn out to be much rarer. Additionally, the mind notices something particularly interesting: small differences to prediction do not seem to make much difference to accuracy. Or in other words, if it takes its best guess, then arbitrarily modifies it, as long as this is by a small amount, it will be just as accurate as its original guess would have been.

And thus if it modifies it repeatedly in this way, it can get any outcome it “wants.” Or in other words, the mind has learned that it is in control of one of the incoming streams, and not merely observing it.

This seems to suggest something particular. We do not have any innate knowledge that we are things in the world and that we can affect the world; this is something learned. In this sense, the idea of the self is one that we learn from experience, like the ideas of other things. I pointed out elsewhere that Descartes is mistaken to think the knowledge of thinking is primary. In a similar way, knowledge of self is not primary, but reflective.

Hellen Keller writes in The World I Live In (XI):

Before my teacher came to me, I did not know that I am. I lived in a world that was a no-world. I cannot hope to describe adequately that unconscious, yet conscious time of nothingness. I did not know that I knew aught, or that I lived or acted or desired. I had neither will nor intellect. I was carried along to objects and acts by a certain blind natural impetus. I had a mind which caused me to feel anger, satisfaction, desire. These two facts led those about me to suppose that I willed and thought. I can remember all this, not because I knew that it was so, but because I have tactual memory.

When I wanted anything I liked, ice cream, for instance, of which I was very fond, I had a delicious taste on my tongue (which, by the way, I never have now), and in my hand I felt the turning of the freezer. I made the sign, and my mother knew I wanted ice-cream. I “thought” and desired in my fingers.

Since I had no power of thought, I did not compare one mental state with another. So I was not conscious of any change or process going on in my brain when my teacher began to instruct me. I merely felt keen delight in obtaining more easily what I wanted by means of the finger motions she taught me. I thought only of objects, and only objects I wanted. It was the turning of the freezer on a larger scale. When I learned the meaning of “I” and “me” and found that I was something, I began to think. Then consciousness first existed for me.

Helen Keller’s experience is related to the idea of language as a kind of technology of thought. But the main point is that she is quite literally correct in saying that she did not know that she existed. This does not mean that she had the thought, “I do not exist,” but rather that she had no conscious thought about the self at all. Of course she speaks of feeling desire, but that is precisely as a feeling. Desire for ice cream is what is there (not “what I feel,” but “what is”) before the taste of ice cream arrives (not “before I taste ice cream.”)